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NEGATIVE NORM ESTIMATES 
FOR FULLY DISCRETE FINITE ELEMENT APPROXIMATIONS 

TO THE WAVE EQUATION 
WITH NONHOMOGENEOUS L2 DIRICHLET BOUNDARY DATA 

L. BALES AND I. LASIECKA 

ABSTRACT. This paper treats time and space finite element approximations of 
the solution to the nonhomogeneous wave equation with L2 boundary terms 
and smooth right-hand side. For the case of L2 boundary data, the rates of 
convergence in negative norms are derived. In the case of smooth forcing term 
and zero boundary data, optimal rates of convergence in "positive" norms are 
provided. 

1. INTRODUCTION 

1.1. Statement of problem and results. Let Q2 be a bounded domain in RN 
with a boundary F. We assume that Q2 is either a smooth domain, or else a 
convex polyhedron. Let T > 0, and let y(x, t) satisfy the equation 

(Ytt = Ay in Q =_ x (O, T), 
(1.1) < ~~y(x,O) =O, yt(x,0) = 0 inQ1, 

Ylr =g E L2(2) in I IF x (O, T). 

The main goal of this paper is to construct a fully discrete approximation of 
problem (1.1) and to derive the rates of convergence in negative norms. This 
is done in Theorem 1. To this end, we shall need, as a preliminary step, the 
important new result of Theorem 2, which is also of interest in its own right. 
Theorem 2 contains "positive norm" error estimates for the time and space 
finite element method (FEM) applied to a nonhomogeneous wave equation with 
zero boundary data; see problem (1.25) below. To motivate our interest in 
studying the above problem in negative norms, we recall the recent "sharp" 
regularity results for problem (1.1) from [ 16] (which are noted to hold true also 
for convex domains as well as arbitrary polyhedrons of dimension N < 3 in [ 19] 
and [12]). This result says that the solution of problem (1.1) with g E L2(1) 

satisfies the optimal regularity properties 

(1.2) Y E C[O, T;.L2(1)], yt E C[O, T; H-1(Q)]. 

Since we are interested in "nonsmooth" L2(1) boundary data, we see that the 
optimal regularity result (1.2) precludes the possibility of obtaining rates of 
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convergence in positive norms. On the other hand, negative norm estimates 
will allow us to use postprocessing techniques (see [4, 5, 8, 15, 18]), which, a 
posteriori, will provide good interior convergence results for the solution y. 

In order to introduce the fully discrete scheme, we introduce the following 
spaces and operators: T-1: L2(11) -* L2(11) given by 

(1.3) T-Y =-Ay y E O(T-1)-HO (Q) n H2 (Q) 

the space H L2(Q1) x H-1(Q) with the inner product (u, V)H ((U, V)) 
(U1, VI)L2(a) + (TU2 9'V2)L2(Q); and the skew adjoint operator A: H -) H with 

(A)=_ Ho' (Q) x L2(4) given by 

(1.4) A=(T%1 -I). 

We shall also introduce the so-called "Dirichlet" map, which is defined by the 
formula 

Dg = v iff Av = 0 in Ql and vlr = g. 
It is well known (see [11, 21]) that 

(1.5) D E 2'(L2 (F) -* L2 (Q)) 

From (1.1) we obtain that 

Ytt = A\y = /A(y - Dg) in 9'(Q1); 
that is, 

(1.6) (Ytt, O) = (A(y - Dg), OQ)-(y - Dg, AOb) for all 0 E 9(Q1), 
where 9(Q) denotes Coo functions with compact support in Q2 and (x, Y) a 
fa xydQ . 

We shall show that (1.6) can be extended to all 0 E 9E(T-1) . This is to say 
that, for all 0qE e (T-1), 

(1.7) (Ytt, O)a = (Y-Dg, AO)a =-(Y-Dg, T-1P)X. 
We note that 9(Q) is not dense in O(T-I) in the topology of O(T-I) (i.e., 
H2(Q)). However, to prove (1.7), it suffices to show that for all 0 E O(T-') 
there exists a sequence On E 0(Q) such that 

(1.8) (y-Dg, T-1n)Q - (y-Dg, T-QI) asn - oo. 
Since the elements of (T-1) are in Ho'(Q) , for all 0 E .9(T-1), we certainly 
can find O$n E 9(Q) such that 

(1.9) On '-- 0 in H1(Q). 
On the other hand, from (1.2), (1.5), and since y - Dg = 0 on F, we obtain 
by Green's formula 

(1. 10) a (y -Dg) E (HI()t 

where (HI (a))' is pivotal (with respect to the L2(Q) inner product) to HI (a). 
By using the convergence in (1.9) together with the regularity in (1.10), we can 
pass to the limit in the expression 
(1.1 1) 

(y - Dg S On)a = -(V(y-Dg) , VOn) V, vI (V(y-Dg) S VO)v, v, 
= (y - Dg,~ /AO)a 
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where V =_ H1(Q), hence proving (1.8) and (1.7). Setting uI = y, U2 = Yt 

and recalling (1.2), (1.7), we obtain 

(1.12) { (Ult,01)Q=(U2,q51)a for all q5 EHo'(Q), 
(U2t, 02)n + (U1 - Dg, T-102) =O for all 02 E ?(T-1). 

Application of Green's formula yields 

(Dg, i)a = (Dg, T-1Ty,)a 
(1.13) ( D g,eTV)L T V/ V 2( ) 

Here, 19 denotes the outward normal and (x, y)r fr xy dca. Thus, the 
solution u =- (y, Yt) to (1.1) can be written in a variational form as 

(1.14) (Ult, { 
0a = (U2, XIQ 0 1 E Ho'(Q); 

(U2t, T02)a + (Ul, 02) = - (g, 9 T02)r 02 E L2(Q2). 

The equations in (1.14) will serve as a basis for our approximation. 
Let 0 < h < 1 be a parameter of the space discretization. Let Sq (g) C 

Ho' (Q) be a standard finite element space of piecewise polynomials (or, more 
generally, piecewise curvilinear elements) of degree q defined on Q with a 
quasi-uniform mesh parameter h and with the approximation property 

(1.15)~ AE(Q (I AIL,(a) + hlu - IHI(a) + h312 |a (U - A,) 
< ChSlulHs(a) 2<s<q+1, uEHs(92). 

Let 0 = to < < tm = T be a partition of [0, T], and let Sk[O, T] be the 
finite element space on this partition consisting of continuous piecewise pth- 
degree polynomials in time with time step k = max It1 - tij I, 1 < i < M [i.e., 
SkP[O, T] = {X E C?[O, T], XI[t1_-tuj E PP([t.i_ , ti])}, where PP([ti.1, ti]) is 
the set of polynomials of degree < p on [ti_1, ti]] . Then define 

Whk = Shq (Q) 8 Sk [O, T]. 

Let Th: H- (f) - Shq(f) be an "approximation" of T given by 

(VThf, Voh)h = (f S Oh)a for all oh E Sq(n) 

where (x, y) =_ fa xy. We shall also use the "discrete" norm on H, 

jujh=tU1L|2(Q) + I7hU2tL2(L) C 

and the discrete inner product, 

((u, V))h (U1, VI)Q + (ThU2, V2). 

We always have lUlh < IUIH. Let Ah: [Shq(Q)]2 - H be defined by 

(1.16) Ah- (~ I- 0) 

Since (T-lIyh Xh)a = (T-lyh, xh)n, yh, Xh E Shq (Q), it is immediate to 

verify that for qh, V1h E [Shq (Q)]2 

(1.17) ((Ah oh , Vh))h = ((AOkh Vh=))h = _(((h, Ah ,hV))h 
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Our finite element method for approximating (1.1) is to find uhk E WJ2k such 
that 

(UhTk hk) dt - fO(Uhk q$hk) dt, 

(1.18) fJo T[(Uhk Thohk)a+ (uhk, ohk)n] dt=-Jo (g, T 1 T hk) dt 

1 for all fhk = (q5hk q 5hk) E Wh2k 

uhk(t = 0) = 0, 

or equivalently, 

(I.1I9)T f [((Uhk I,hk))h + ((AhUhk, ohk))hIdt a--Jo (g, UT(k)t)r dt 

for all q$hk E Wh2k 

uhk(t = O) = O. 

On the other hand, the finite element solution uhk(t) can be computed by 
marching through successive time levels. Indeed, uhk can be computed on 
[t, t,,n+] as the unique solution (as we shall see later) of 

J utk whk))h + ((Ahuhk whk))h] dt 
(1.20) t tn+- (g 8 Thk) dt 

for all whk E [[Shq(Q2)] 0 PP-1[tn, tn+li]]2 with uhk (tn) given. 
Notice also that another (equivalent) version of (1.18) or (1.19) is the fol- 

lowing: 
(1.21) 

T JO(* k O Xhtk)Q dt = (Uh2k, O hk),, dt, 
T hk [(u h 

Ck)a + (Vuhk, ,Vhk)a]dt = - fT (g hk) dt g hk E W 2 

uhk(t = 0) = 0. 

Remark 1.1. Note that for the elliptic boundary value problem -Aw = 0 in 
l, w = g on F, Nitsche's method is to find wh E Sh (Q) C H1 (Q) such that 

(Vwh, V$h)a- (wh - 4g O4) (h ah oh) + fh I(wh -g h)r = ?, 

for all qoh E Sh (K2) c H1 (Q), where ,B is a positive constant. Nitsche's method 
in the space variables combined with time discretization, when applied to (1.1), 
yields the following algorithm (see Appendix): 
(1.22) 

JO k ohk)Q dt = fO (uhk , hk)n dt, 

fT[(uhk ohk)Q + (VUhk, Vhk)l- (0 Uhlk q$hk)r - (Uhk , 8 ohk)) 
+ flh - (u4hk, 5hk)r] dt 

JO [ ( khkA+ ) + flh- (g, Oh*t)r] dt for all ohk E Wh2 

uhk(t = O) = . 
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If Sq(Q) c H,1(11), then (1.22) is equivalent to (1.21). For smooth data, the 
rate of convergence of this restricted version of Nitsche's method is not optimal 
when compared to Nitsche's method that is not restricted to functions which 
vanish on the boundary F. For simplicity, and since we are considering the case 
of nonsmooth data, we do not incorporate the extra terms in (1.22), which are 
required for the unrestricted method. In [9], the extra terms were included in 
the case of parabolic problems with nonhomogeneous Dirichlet boundary data, 
and optimal rates of convergence for smooth data (and nonsmooth data) were 
proved. A rather straightforward compilation of the techniques of the present 
paper with ones in [9] allows one to prove optimal rates of convergence for the 
algorithm (1.22) when applied to both smooth and nonsmooth boundary data. 

In order to formulate our convergence results, we recall some notation. For 
any s E R, T-5 (resp. As) denotes fractional powers of the operators T-1 
(resp. A). Since these are closed and positive normal operators, the fractional 
powers are well defined (see [22]). Note that the following relation holds: 

9(A) = O(T-1/2) x L2(Q) 

and, more generally, for s > 0 

(1.23) . (As) = O(T`12) x (T-(s-1)/2) 

Here, for s > 0, O(Ts)- ((T-s))', and duality is understood with respect 
to the L2(Q) inner product. Thus, (Ts) can be endowed with the following 
topology: 

(1.24) IUL2(TS) IT5UL2( for s E R. 

We then introduce the spaces 

fP,q=-Hl[O T;?2(Aq)]nHl[O,T;?2J(AP)]fnHP[O,T;H] forp,q>O 

and p-p, -q = (XP, q)', where duality is taken with respect to the f0T(, *)H dt 
inner product. 

Our main results are as follows. 

Theorem 1. Let u- (y, Yt) be the solution to (1.1). There exists a unique 
solution uhk of( 1(.18). Moreover, the following error estimates hold: 

(i) lu - uhkl '-p,-q < C1g1L2(y)h 1/2[kP + hq]. 
(ii) The same result holds with *p, q replaced by 

p,q -= Lo[0, T; O(Aq+l)] n L2[6, T; O(AP+1)] n HP-'[0, T; 9(A)]. 

Corollary 1. Let y(t) satisfy (1.1) and yhk denote the first coordinate of uhk. 
Assume p = q. Then 

ly - yhkIH-q < C19IL2(y)h 1/2[hq + kq], 
where H-q is the dual with respect to the L2[0, T x Q] inner product to 

Hq--L2[O,T;Hq+l(Q] q- "[O T; Ho'(L)] 

L2[0, T; H q+(L)] n H[O T; L2(Q)] - H+ ( 

where we denote Ho (Q) _ D(T-P/2). 

As mentioned above, in the process of proving Theorem 1, we need "positive 
norm" error estimates for the time and space FEM applied to a nonhomogeneous 
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wave equation with zero boundary data. Since this result seems to be new, 
original, and of interest in its own right (see comments in ? 1.2), we shall describe 
it below. 

Let y(x, t) satisfy the nonhomogeneous wave equation 

(Ytt=Ay+F inQ, 
(1.25) y(t =0) = Y, yt(t =0) = y inQ1, 

y=O onl, 

where the forcing term F E L2(Q) and the initial data (yo, Yi) E L2(Q2) x 
H-1 (Q) . Our finite element method for approximating (1.25) is to find Uhk E 
W2 such that 

fj It((uhk hk))h + ((Ahuk, thk))h] dt = f7'((f Shk))h dt 

(1.26) for all qhk E Wh2k, 

ukh(t = 0) is given, 

(1.27) f-(O, F). 

Notice that (1.26) is equivalent to solving the following system of equations: 
uhk = (uhk,~ uhk), U (1 S 2) 

{ fT[(U lhk hk), -(u2k, Xthk)Q] dt = 0, 

(1.28) f hk [(u2Cft k)Q + (VU2hk, V4thk)n]dt = T(F k)dt 

VqShk V,hk E Whk. 

On the other hand, the finite element solution uhk(t) can be computed by 
marching through successive time levels. Indeed, uhk can be computed on 
[ta, t,+1] as the unique solutions (as we shall see later) of 

tn+ tn 1 (1.29) J[(u~ whk)h + ((Ahuk wh))h] dt = f+(f whk))hdt 

for all whk E [[Sh(Q)] 0 Pp-[tn, tn+l]]2 with uhk(tn) given. 
Following [1], we introduce the "time projection" operator Rt: H1[0, T] 

SkP defined by 

( 1. 30) f 0fj (Rt Vq)$( dt = fjt y t' dt, VSk E Sp 

(RtV)(O)= V(=). 

The above definition allows us to define extended projections 

Qt: H1[O, T; H] -- H? (Sk)2 

given by 

(1.31) Qt= (RtV1, RtV2) where V'= (vi, Yv2). 

We also introduce "spatial projections" 

Pxd L2O, T; eeb(A)] y [Shq(Q) X L2O, T]]2 

defined by 
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where P is the usual L2(Q) orthogonal projection onto Sq(2), and PI is a 
corresponding "elliptic" projection. 

The following error estimates can be proved in a standard way: 

T 
(1.33) (Qt -I) V 12 dt < Ck2(p+ ) YIVHP+12[0, 

T 
(1.34) J I(PX-I)yiIh dt Ch 

We are now ready to state our main result, valid for (1.25). 

Theorem 2. Let u (y, Yt) be the solution to (1.25). There exists a unique 
solution uhk = (yhk , yhk) to (1.26) (or equivalently (1.28)). Assume also that 
uhk(O) = (P1yo, Py1). Then 

max (Iyhk(t) - (PlRty)(t)L2(Q) + lyhk(t) - (PRtyt)(t)IH-1(n)) 
tE[O, T] 

< C[hq+l +kP+'][lHp+,[O,T;Hl(Q)]+IYtIHP+I[O,T;L2(n)]+IYtIL2[0 T;Hq+ (n)] 

If instead uhk(O) = (pyo, ply,), then 

tmoX(lyh (t)-py))l(Q + lythk - (PlRtyt)(t)1L ) max (Ih()- (PRty)(t)IHI(n) + ~h PRy)tI2(n)) 
tE[O, T] 

< C[hq+1 + kP+][IylHP+1 [0, T;H2(Q)] + IYtIHP+1[0, T;H1(Q)]+ IYttIL2[O, T;Hq+l(Q)]]. 

Remark 1.2. By combining the results of Theorem 2 with the convergence prop- 
erties in (1.33), (1.34), one obtains error estimates for u = uhk. Details are 
straightforward, hence are omitted. 

Remark 1.3. Error estimates for the algorithm in (1.28) expressed in terms of 
Ho'(Q) x L2(Q) norms are derived in [6]. 

Remark 1.4. The arguments of this paper apply to any abstract operator A with 
the properties Re(Ax, X)H = 0 and IA*xIH < CIAxIH. 

Remark 1.5. Notice that the rates of convergence of approximations are always 
subject to the regularity of the corresponding solutions. This, in turn, depends 
on the regularity or type of the boundary F. Thus, in practice, whenever the 
boundary is not C??, the rates of convergence may be limited by the proper- 
ties of the domains. Since questions of regularity are not the main focus or 
contribution of this paper, we shall not pursue this aspect of the analysis any 
further. However, the estimates in both theorems should be understood as be- 
ing subject to the above-mentioned regularity. More precisely, the value of q 
should be less than or equal to ao - 1, where ao is such that the inclusion 
O(T-a/2) c Ha (Q) for a < ao holds (see (4.8)). 

1.2. Literature. Semidiscrete approximations, combined with a regularization 
procedure for the wave equation (1.1) with L2 boundary data, were considered 
in [16]. Fully discrete single step approximations for second-order hyperbolic 
equations with smooth initial data and zero boundary conditions were treated 
in [8] (and in references therein). "Negative" norm estimates for second-order 
hyperbolic equations with zero boundary data and "rough" initial conditions 
have been derived in [4]. 
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The convergence properties of finite element methods-in time and space- 
were studied in [1] for parabolic problems defined on polygonal domains, and 
in [24] for first-order, one-dimensional hyperbolic systems. The error estimates 
obtained in [1] (also [24]) are optimal in the sense that they reconstruct the 
best approximation properties of the underlying approximating spaces, modulo, 
however, regularity of the corresponding solutions, which, in turn, depends on 
the nature of the corners of the polygon (see Remark 1.4). 

As to space and time FEM applied to the wave equation, in dimension higher 
than one, the only work we became aware of, after the first draft of the present 
paper was completed, is [10]. This work considers the nonhomogeneous wave 
equation (see (1.11)) subject to zero boundary conditions defined on a poly- 
hedral domain, with smooth initial data and forcing term F. In [10], error 
estimates are derived under the restriction that k < coh, where c0 is a suitably 
small constant. 

The result of Theorem 1 (resp. Corollary 1) is the first analysis of fully dis- 
crete approximations and, in particular, space and time FEM, applied to the 
wave equation with "rough" boundary data. Here, the error estimates are opti- 
mal, in the sense that they reconstruct the best approximation properties of the 
finite-dimensional subspaces (modulo, of course, regularity considerations-see 
Remark 1.5). Moreover, these results hold without assuming any compatibil- 
ity between the time and space step. Also, in the case of the nonhomogeneous 
wave equation with smooth data, our results (Theorem 2) are optimal and do not 
require compatibility between k and h. Moreover, the rates of convergence 
obtained in Theorem 2 require one derivative less than the corresponding results 
in [10]. This difference is due to a different choice of space projection operators. 
Indeed, the projections used in [10] are the same as the ones introduced in [1] 
for parabolic equations. Instead, in our case, the projection operators which we 
choose are more tuned to the hyperbolic nature of the problem. 

1.3. Orientation of the paper. The main strategy in proving Theorem 1 is an 
estimate of the difference between the adjoint of the solution operator for the 
continuous equation and the adjoint of the solution operator for the discrete 
equation, as in [4]. This technique is often referred to in the literature as duality, 
or solving the dual problem. The amount of technical detail in this work is much 
greater than for the homogeneous equation in [4], owing to a combination of 
the following factors: 

(i) the product space L2(Q) x H-' (Q) and a discrete analog of this space 
(as in [2] and [4]) are used in the analysis; 

(ii) a nonhomogeneous hyperbolic boundary value problem with nonsmooth 
boundary data is analyzed; 

(iii) time discretization is based on time stepping methods (see [1] or [24]) 
for nonhomogeneous equations. 

As will be seen in ?3, the formulation of the dual problem leads to an equation 
whose structure is different from the ones usually encountered in similar situ- 
ations (for instance semidiscrete approximations or time-space approximations 
of initial value problems). The task of proving error estimates for this "dual" 
problem is another point where new ideas are needed in ?4. To appreciate this 
point, let us mention that for a simpler problem (a special case of the dual prob- 
lem considered in ?4), which is just space and time FEM approximation of a 
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forward wave equation with nonhomogeneous right-hand side (see ?2), the error 
estimates and, in particular, stability estimates do not follow from the usual 
arguments based on energy methods (as is the case for parabolic equations; see 
[1]). Indeed, even the one-dimensional hyperbolic problem treated by [24] re- 
quires rather delicate arguments, which critically rely on the one-dimensionality 
of the problem. In the case of higher dimensions, the situation is plainly more 
difficult: here the key ideas are contributed in ?2, where the fundamental sta- 
bility estimates are obtained for a forward wave equation (see Lemma 2.1). 
By using these stability estimates, we derive "positive" norm estimates for the 
dual problem in ?4. These estimates, together with the structure of the adjoint 
("dual") problem formulated in ?3, are used (in ?5) to prove the main result of 
Theorem 1. 

2. A PRIORI ESTIMATES 

In this section we consider the problem of finding zhk E (Whk)2 such that 
T 

f[((Zt ht ))h + ((Ah Zhk, hk))hI dt 
(2.1) J T 

J ((f qihk))^ dt for all qhk E (Whk)2 

where zhk(0) is given in (Whk)2 and f E L2(Q) x H-'(Q) . Notice that in the 
special case when f = (O, F), (2.1) coincides with (1.26). 

The goals of this section are to prove that (2.1) has a unique solution zhk 

and to prove the following stability estimate. 

Lemma 2.1. Let zhk be a solution to (2.1). Then there is a constant C which 
does not depend on h and k such that 

(2.2) max I zhk(t Ih h ? C 1 d 
Before tE[?'T] (01h < C [IZ Ih + (J IfIh) dtl 

Before we prove this estimate, we note that since (2.1) is a system of linear 
equations with as many equations as unknowns, and uniqueness follows from 
the stability estimate (2.2), the following corollary is a direct consequence of 
Lemma 2. 1. 

Corollary 2. The system (2.1) has a unique solution zhk E (Whk)2. 

Proof of Lemma 2.1. The proof is a consequence of the following propositions. 

Proposition 2.1. For m =0, 1, ... ,M- 1, 

(2.3) lZhk(tm+l)2 l-IZhk(tm)12 < C [j 2 jdt + X I|ZhkI2dt1 

Proof. Toprove(2.3),consider(2.1),andtake 

(2.4) ~ hk ft { Ah 'Zhk for t E [tmi, tm+i] dt 
0 0 otherwise 

Thus, q^hk(t) = 0 for t < tm,, q^hk(t) = ft AhlZPhkdt for t E [tm, tm+I], and 

Xhk(t) = j Ah7lztAkdt for t > tm+l . 
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Then, using the identities 

(2.5) ((Ah/h , A71 'vh))h = -((Ih Vlh))h for Oh W,h E (Sq)2 

(2.6) ((Ahoh ' 0h))h = ((A-'Oh 0bh))h = 0 for oh E (Sq)2 

we obtain 
ftM+1tM t+ 

Zh)hd | ((z A-l zhk))h dt - , = hfA-Izhk))dt, 
ztm t tm 

and by (2.6), 

(2.7) lzhk(tm+1)12 _ Zhk(tm)12 =-2 2 (( f, A-Zhk))h dt. 

We shall also need the test function 

(t rA-2Zhk(t) for t E [tm, tm+i]] 

( 0 otherwise 

Consider (2.1) with (2.8): 
(2.9) 

jm+ [((zhkhk Ai2zhk))h + ((Ahzhk A-2zhk))h] dt =jm+l f A-2zhk))h dt. 
tm t~~~~~~~~~~~~m 

By (2.5) and (2.9), 

tM| |A1 hk l2 tMt < hk lh A Zthk |h dt + 
M+ I |A fl A 7lhk Is dt. 

Jim tm Jm 

Hence, 
tm+1 tm 

(2.10) / IAiT zlkl+dIA? C[/hkt 

Combining (2.7), (2.10), and the estimates JAj-1fj2 < CjfJ2 yields the result 
of Proposition 2.1. 0 

In order to complete the proof of Lemma 2.1, we need to estimate the term 
tm+1 lz,hk2 |dt in (2.3). 

Proposition 2.2. There holds 

mzhk 12dt < Ck [lzhk(tm)l2 + k lfl |f|dt] 
tm tm 

Proof. We notice first that (2.1) is equivalent to solving 

(2.11) [(( zk, whk) )h + ((A zhk, whk))hldt = j ((f whk ))hdt 
tm tm 

for all whk E (Shq(Q) ? pP-l[tm, tm+i])2 with zhk(tm) given. As in [24], we 
rescale the problem and define z and f in (Shq () ? PPl[0 11)2 by 

(2.12) Z(t) _ Zhk(tm + kt), f(t) = f(tm + kt) where t E [0, 1]. 
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By (2.1 1) and (2.12), z satisfies the equation 
,1 p1 

(2.13) | ~[((2rt W ))h+ k((Ahz Z 9 ))h]dt = k| (( w h))dt 

for all whk E (Shq (i) ? PP-l[0, 1])2. To prove the result in Proposition 2.2, it 
suffices to establish the following estimate: 

(2.14) Z Z()h dt<C |( = )h + k If hdt- 

Indeed, since 

J I2(t)1a dt = j-| IzhkI1 dt and j If(t) 12dt - k j If(t)I^ dt, 

the inequality (2.14) is equivalent to 
f tm+ 

|+ 
I 
zhk (t) 12 dt < Ik[ Zhk (tm ) 12 

m k If |hdt] 
tm 

as desired. Thus, it is enough to prove (2.14). 
Let z(t, x) = EjP=o j1z, where {I}oj1P is a basis for PP[O, 1], and Zh E 

[Shq(Q)]2 
j = 0, 1, ... p. Consider (2.13), and set whk = iwh , where 

wh E [Sq (Q) 2 

= k j ((f, kiwW))h dt 

for all wh E [Shq(n)]2, i = 0, 1, ..., p - 1 . Rearranging yields the identity 

(2.16) 

for all wh e [SI(i)]2, i - 0, 1, ... , p- 1. Therefore, I = j satisfies 

(2.17) o [(Jjidt) j+ ( h d) kAhzj] = kjA hif dt 
Oi ~ ~ ~ ~ ~ ~ iO l,...,p-l 

Let {qi}l}.0 be the Legendre polynomials on the interval [0, 1], i.e., q$1(t) = 
P1(2(t - 1/2)), where P1(x) is the Legendre polynomial of degree i on the 
interval [-1, 1]2. Then we have that 
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(2.18) 
Il$jdt ={;Jl 

J { QiXil~~~o' - jo X0 dt = I - Oj(O)Oj(0) = O or2, j>i 

since qi (l) = 1 and qi (O) = +1. Also, 

(2.j9i dt = J Pj(2(t - 2(t - 2)) dt 

(2.19)~ ~ ~~~~~~P ?x Pi?) - 
= 1 J P2(x)Pi(x) 2i+ - . 

Since 2(t = 0) = EjP=o j(t = ?= EjP=0(-l)jz? it follows from (2.17), 
(2.18), and (2.19) that 
(2.20) 

'I -I I -I +1 
kAh 2I 0 21 . 0 2(t=0) 

0~Ah 21AI. 0 k fo ofdt 

* ~~~~~~~~0 Zh kfh bp f dt 
0 0 2-Ah21 

Using determinants to find the inverse of the matrix in (2.20) (see Hoffman 
and Kunze [13, Chapter 5, p. 140] for a discussion of determinants of matrices 
whose entries are elements from a commutative ring with identity), we have 
that 

(z0h'\ Roo Rol Ro. ( 2(t = 0) 

(2.21) LZ,hJ = Ri Rll *I, RIp) k 4 lof dt I 

zh Rpo Rpl I ... Rpp k g p_ dt 

From the definition of the determinant, it follows that Rlj is a rational function 
of kAh with degrees of numerator and denominator less than or equal to p . In 
fact, since for homogeneous problems (f = 0), 2(t = 1) = r(-kAh)2(t = 0), 
where r(x) is the (p, p) diagonal Pade approximation to ex (see [13]), the 
denominator of Rlj is a constant multiple of the denominator of r(-kAh). 
The rational function r(x) has p distinct poles in the right-hand half of the 
complex plane. It follows that IRlj(z)I < C for Re z < 0 . 

From Lemma 4.2, p. 398, of [3] it follows that if Re a 0 0 and R(z) = 

+z IR(-kA)h < C, where C is independent of h and k. Since the 
numerator (as well as the denominator) of Rlj has degree less than or equal to 
p, it follows that 

(2.22) IRIjjh < C, 

where C is independent of h and k, by writing the numerator and denomi- 
nator of Rlj as products of linear factors. 

Since 2(t, x) = EPOi qzhz, we have 
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( jI(t)I^ dt 2 C E J k0$(t)zPhI2 dt = C Z J 1z2PI kb(t)I2 dt 

(2.23) 1=pO0 1=0 
p 

<C|ZIzlI. 
1=0 

Note that from (2.21) 

(2.24) zi = R,oi(t = 0) + Z Rljk qJ1 fdt. 
j=0 

The relations (2.22), (2.23), and (2.24) imply that 

(2.25) j [Z(t)h dt < C = 0)I^ + Z J kkjlf dt) 

Since 
1 2 (1 ~ 2 

IJkoj If dt| < (Jlkoj-lfIh dt) (2.26) ? h ? 

< 10j_ I 12dtj IkfI1dt < Ck2j IfI2dt 

it follows that 

(2.27) J I2(t)1h dt < C (12(t = 0)12 + k2 JIfI dt) 

which completes the proof of (2.14), and hence of Proposition 2.2. 0 

Proof of Lemma 2.1 (continued). From (2.22), (2.24), and (2.26), it follows 
that 

p (1 ~~~~~~~~~~~ ~1/21 

(2.28) max I (t)Ih ? CZIzlIh ? C [i2(t = 0)Ih + k 12dt 
tE[O, 1] 

'0h CL 1< 1'tOl+ at I 

1=0 / 

Hence, 

(2.2) max Izhk(t)Ih [IZhk(tm)Ih + IfI2 dt) 1/2 
(2.29) ma[t Ih fl 4] [ + jl 

By combining the results of Propositions 2.1 and 2.2, we obtain 

(2.30) IZhk(tm+i)i2 - izhk(tm)1 ? C (kIZhk (tm) 12 j If 12dt) 
By the discrete Gronwall's identity we obtain 

(2.31) IZhk(tm)I 12 [<tC IfI dt + Iz hk()12 
The conclusion of Lemma 2.1 follows now from (2.31) and (2.29). 0 

3. THE ADJOINT PROBLEM 

Following [20] (see also [21, p. 190]), we introduce a dual (pivotal) space 
O(T-1)', where O(T-1) c L2(2) c O(T-1)' and L2(Q) is identified with 
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its dual. Then the adjoint (T-1)* of the operator T-1, considered as a bounded 
operator 0 (T- 1 ) L2 (Q), is bounded: L2 (Q) -- O(T-1)'. Since (T-l)*x = 
T-lx for x E O(T-1), (T-')* is a proper extension of T-1 and (T-1)* E 
Y (L2 P) 9-- 0 (T-1)') . For simplicity of notation we shall use the same symbol 
T-1 to denote its extension, such that 

(3.1) T- E Y(L2(il) 
-- (T1) ). 

Going back to (1.12) and using the above interpretation of T- , we obtain that 
forall 02Ee(T-1) 

(U2t, q02)n + (T-(uI -Dg), 02)X = 0 
Here, the inner product (x, y)Q should be understood as a duality pairing 
between O(T-1) and O(T-1)'. Again, for simplicity, we shall use the same 
notation (x, y)Q for duality pairing. From (3.1), (1.5), and (1.2), 

T-1(u- Dg) = T-1u - T-Dg on 2(T-1)'. 
The above formula yields the following abstract differential equation satisfied 
by the variable u = (ul, U2): 

(3.2) { ut+Au=Bg on O(A)', 
(3.2) ~~~~u(t =0)=O, 

where, we recall, 9(A)' = H-'(Q) x O(T-')' and the operator B E 
(L2 (F) 9-- (A)') is given by (see (3.1)) 

Bg= (T2Dg). 

Using the fact that the operator A generates an unitary group on 9(A)', we 
can use the variation of parameter formula (on 9(A)') to write an explicit 
form of the solution to (3.2): 

(3.3) u(t) = (Lg)(t) = j e-A(t-T)Bg(T)dT. 

For a more detailed exposition of differential equations defined on extended 
spaces and semigroup formulas defined within the extended framework, we 
refer the reader to [7]. 

Thus, with g E L2() , we know a priori that u E C[O, T; 9 (A)']. However, 
sharp regularity results of [ 17] (see also [19] and [1 1] for the case of nonsmooth 
boundaries) provide us with improved regularity of the operator L, namely 
that 

(3.4) L E Y(L2PE -- C[O,9 T; H]). 
For the continuous and discrete dual problems, we will need the adjoint of L 
evaluated with respect to the (u, V)H = ((U, V)) inner product and with respect 
to the ((u, V))h inner product. To obtain this, note that for u E O(T-1) 
Ho'(Q)nH2(Q) and WEL2(F) 

(D*(-A)* U, W)L2(r) = (-Au, Dw)L2(Q) 

=-f Dwdu+ (dw)d -f uA(Dw)dx 

(u \ 
OV /L2(F) 
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since A(Dw) = 0 in L2(i2) and Dw = w in L2(F) by definition of D and 
u = 0 in L2(F) . It follows that for q E -(A) Ho (Q) x L2(L) 

(Bg, qO)H = (T-'Dg, 02)H-1(Q) = (T-'Dg, T02) = (Dg, T-1T02)n 

( (Dg, -ATT02)0 = - (g, 8 T02) 

Similarly, 

(3.5i) ((Bg, q))h =- (g', hT 2) , q0 e E 

To compute the adjoint of L, we notice that the operator L can also be rep- 
resented by (Lg)(t) = (KBg)(t). Here, the operator K: O(A)' -+ O(A)' is 
given by (Kf )(t) ft eA(-t+T)f(T) dT - z(t), and z(t) satisfies 

(3.6) {zt + Az = f, 

We compute the adjoint L* of the operator L, where the adjoint is evaluated 
with respect to the f0T((, *)) dt inner product, i.e., 

j (L*f, g)rdt = | (f Lg)H dt. 

By (3.5) and direct computations with the wave operator (notice that the H- 
adjoint of A is -A) we obtain 

(3.7) (L*f)(t) = T[K*f ]2, O9v 
where 

IT 
(3.8) (K(f)(t) e-A(-T+t)f(T)dT. 

Note that w (t) _ (K* f ) (t) satisfies 

(3I9) Wt + Aw = -f 
w(T) = O. 

It is well known that 

(3.10) K* E Y(L2[O, T; O(AO)] -- C[O, T; O(AO)])l for all a. 

Let the operator Lhk: L2(A) - Wh2k be defined by 

(3. 1 1h) (Lhkg() )Uhk (t), 

where uhk(t) satisfies (1.18). Let the operator Khk: L2(0, T; H) - Wh2k be 
defined by 

(3. 12) (Kkf)t hk () 

where zhk (t) satisfies (2.1) with zhk (0) = 0. From (2.1) and (3.5i) we deduce 
that 

(3.13) (Lhkg)(t) = (KhkBg)(t). 

IHere we adopt for a < 0 the notation ?(A) -((A-a))', where duality is with respect to 
the L2(Q) x H-' () inner product. 
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We shall compute the adjoint L*k of Lhk with respect to the f0T(( ))h dt 
inner product, i.e., 

rT rT 

(3.14) JT((Lhkg, U))hdt= jT((g, Lhku))hdt. 

To accomplish this, it suffices to compute Kh*k with respect to the f0T(( ))h dt 
inner product. Indeed, by (3.5i) and (3.13), 

(3.15) (Lhkf )(t) =-Th[Khkf ]2 

where [Y/]2 denotes the second coordinate of V/. 

Proposition 3.1. The operator Khk: L2(0, T; H) -- (WJhk)2 is given by (Khkf)(t) 
- Whk(t), where whk(t) E (W4hk)2 satisfies 

(3.16) 

j [((W hk o))h - ((AhWhk, h))k] dt+ ((j[f +Ahwhk] dt, qshk(t = 0))) 

= ((f q$ihk))h dt for all ohk 
E [Whk]2. 

Notice that at each time level, (3.16) consists of dim(Shq(Q)) x p equations 
with dim(Shq(Q)) x p unknowns. (dim(Shq(Q)) equations corresponding to 
t = 0 are redundant.) 

Proof of Proposition 3.1. We need to prove that Khk defined by (3.16) is the 
adjoint (with respect to the fof(( , ))h dt inner product) of the operator Khk 
defined by (3.12); i.e., we need to show that 

rT rT 

J((Khkf, V))h dt = j((f KhkV))hdt 

for all f E L2(0, T; H). 
Consider (2.1) with the test function ohk = whk E (Whk)2, 

T T T 
(3.17) hk whk)) dt+j((Ahzhk, whk))hdt - ((f, wk))hkdt 

o(zt o o)hdt + hZ 9 ))hdt V 9 W ))hdt 

Consider next (3.16) (with f = v) and with qhk = zhk, 

J[((whk Ztk))h ((Ahwhk, zhk))h] dt 

(3.18) + T(( 

+ ( (-v + Ahw hk) dt, zhk (t = 0) ((V, zhk))hdt. 

Since zhk(t = 0) = 0, by (1.17), we obtain 

V ( Ihk(V)))h dt = J ((f, wk))h dt = j((v zhk))h dt 

T 

= j ((V,Khkf))hdt 

as desired. 0 
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Since the adjoints L* (resp. K*) are computed with respect to the 
T0 ((,)) dt inner product, while Lhk (Kh*k) with respect to the f0T(( ))h dt 

inner product, we need to estimate the difference between these two (different) 
adjoints. Proposition 3.2 below is proved along the same lines as in [4]. 

Proposition 3.2. There holds 

oT rT 
j (((L-hk)9, f ))dt-J(,( - Lhk)f )Fdt 

(3.19) T 
o 

1 (L* ( )dt 

Proof. Following [4], we have 

- (((L-Lhk)g, f ))dt 

= - (((L-Lhk)g, f ))dt + ((Lhkg, f ))hdt ((Lhkg, f ))hdt 

IT TT 

= jT((Lhkg, f ))hdt-j ((Lhkg, f))dt 

rT rT 

- jT((Lhkg, f))h dt+ ((Lg, f)) dt 

oT oT 
= jT((Lhkg, f ))hdt-j ((Lhkg, f ))dt 

rT rT 
+ J(g, L*f )rdt-j (g, Lhkf )rdt, 

since ((Lhkg, f)) = ((LhkgS (99 LTf2)))h (g, Lk (ih Tf2))r 

J [( (h f2- Th ' Tf2 )r+J( (L-h*k)f )r] dt 

as desired. 0 

Now we are in a position to express the error of approximation for uhk (in 
negative norms) in terms of the error for the adjoint problem. 

Lemma 3.1. Let u be the solution of Ut + Au = Bg on 2(A)', u(t = 0) = 0, 
and uhk be the solution of(1.18). Then 

IIu - uhk 11-P, -q 

L(uh(L*-Lk)ViIIL2(1) 
+ aTh [hk (2 T /2 

< y tIL2(h) SUP of Pr o 3 

Proof. By the result of Proposition 3.2, 
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IIu - |tk -I = II (L -Lhk)gll-p,-q SUP fT(((L 
- Lhk)9, Vh ) )dt 

= SUp [jfj(g, (L*-Lhk)vI)rdt fTv(Lhk ( W2-T2 TW2 ) 'gr 
TL + L* e0 Jt 

by (3.15) 

[I2L*-LShk) 
VI I L2(L) + 1 Th E Khk ( ]2 I-1TY,)] L2(L)] 

? IgIL2(L) SUp h22tp,q 

as desired. 0 

Our next step is to derive the error estimates for the adjoint problem. This 
will be done in the next section. 

4. ERROR ESTIMATES FOR THE ADJOINT PROBLEM 

From (3.7) and (3.15), 

(4.1) L*y -L*ky/ = [T[K* -Th[KZkY]2]. 

Let Ph denote the orthogonal projection of L2(Q) onto Shq(f). Then 

(4.2) 

IL* / - L* 2 < T - Th) [K* V12 Th (K(T TK)[Ky I]2 +2 

< a(Ph T -Th) [KY/]2 + 
a 

(I -Ph) T[K*yII12 
I av UL2 (1) Iav IL2 () 
+ 

a 
Th[[K* Khk]II]2 

Since [23, p. 18] 

(4.3) 
a 

h < Ch112 kkhIHl(n), 5 - L2(I') 

we obtain from the estimates for Th 

(4.4) f Thf ? Ch 1I2IThf IH(fl < Ch1121T fL2(f) 
L2(T') 

By (4.4), 

|a>Th[K KhZk)V]2 < Ch1I2T1l [(K* - Kh*k)YI]2IL2(Q) 

(4.5) r T1 1/2 

< Ch112 [ j (K* Kk)V 12dtJ 



FINITE ELEMENT APPROXIMATIONS TO THE WAVE EQUATION 107 

Since, by (1.5), 

(4.6) 
a 

-(I - PO)Ob < Ch+1 312 IOIHq+1(0) 

and recalling the regularity of T, we get 

(4 7) - (I - Ph) T[K* V'12 < Chq I T(K* V/)2IL2(o, T;Hq+'(fl)) 

< Chq - |/1[K* V12 IL2[0,T;Hq-l(!Q)]. 

For a > 0 and smooth domains we always have [21] 

(4.8) 2(T -a/2) c Ha (). 
In the case of polygonal domains, the values of a for which (4.8) holds may be 
restricted by some ao > 0 . For convex domains we always have ao > 2 [1 1]. 

By virtue of (3.10), (1.23), and (4.8), we have for q < a0 - 1 

(4.9) l[K* Y/]2lL2[o, T;Hq-I(f)] < CIK Y'IL2[0,T;,T9(Aq)] < CIVIL2 [O, T; O(AQ)]. 

Combining (4.7) and (4.9) yields 

(4.10) a (I - Ph) T[K V/]2 
< Chq )/ IL2[0,T;(Aq)]. 

From (4.3) we have that 

-a(PhT - Th)[K* V/]2 < Ch 3/2 I[PT - Th][K* 112IL2(Q) 

and by the elliptic approximation estimates (see [23]) 

< Ch -3/2 hq+1 I [K* V]2 IL2[O, T; Hq- I(0)] a 

By the same estimates as those leading to (4.10), this is 

(4.11) < Chq I |1 |L2[0, T;O(Aq)]a 

Combining the results of (4.2), (4.5), (4.10), and (4.11) yields 

Lemma 4.1. For q < ao - 1 we have 

IL*V, - L*kyIIL hqL)1?1 *Y-hk V |L2(?) < V /IWIL2 [?, T; 0(Aq)] 

(4.12) IT ) 1/2 

+ Ch-1/2 I (K* - k 2vI dt 

In order to provide an explicit bound for L* - Lk, we need to estimate 
IK* - Kh*kIh. Notice first that, by the result of Lemma 2.1 and (3.12) we can 
infer that 

(4.13) fT dt IzhkI2dt < Cj IfI2dt. 

Hence, we have 

Proposition 4.1. There holds 

(4.14) 1 T/12 dt < C IV 1 dt 
We shall prove 
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Lemma 4.2. We have 
T 

J IKh*k -K*y 12dt 
o~~~~~ 

) < C I(PX-I)(K*')tl dt + j (Pt - I)AK* ViI1 dt 

+ I(I - PtPX)K* V dt] 

where Pt, px are defined by (4.21), (4.22) below. 
Proof. By (3.8) and Proposition 3.1, 

K*ky/ - K* -/ w=hk -w 

where w satisfies (3.9) and Whk satisfies (3.16). Thus, we need to estimate 

T 
| |w - whkj2 dt. 

o~~~~ 

We multiply (3.9) by rhk E Wh2k, take the inner product ((, ))h, and integrate 
by parts. This gives 

T T 

/ ((WIv Xthk))h dt + ((w(t = 0), /hk(0)))h j((AW khk))h dt 
(4.16) T 

=/ ((f ,hk))hdt 

On the other hand, since wt = -Aw - f 
T 

(4.17) w(t =0) = j(Aw + f )dt. 

From (4.16) and (4.17), 

(4.18) 

jT wq$k))I dt + (( (Aw + f ) dt, q$hk(O))) - ((Aw, qhk))^ dt 

= j ((fX hk))hdt 

Subtracting equation (4.18) from (3.16) yields 

T T 

/ ((w -w, /,k))h dt + - AhWhk Xhk))h dt 

(4.19) + ((J[Ah - Aw]dt, bhk(0))) =? 

With ilAk any element in [Whk]2, denote e = whk - W1k. From (4.19), 
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jT((e qlk) )h dt- ((Ahe, qhk))h dt + (( Ahedt, hk(O)) ) 

(4.20) = ((W - Dhk, khk))d ((Aw - A- hk .k))h dt 

+ ( (jT(Aw-A-hk) dt, o$hk(0))) 

We shall introduce the following approximating operators: 

Pt: L2 [0 T; H] --+ H 2 

defined by 

(4.21) ((pt k)) = f|k (( )), k e H P)2 

and 
Px: LAO0, T; O(A)] -+[Shq(Ql) L2[0, T]]2 

defined by 

JT _ T( 
(4.22) ((APx V/ ko))hdt ((A= h))dt, oh E (Sh)2. 

It will be seen later that the definition in (4.22) coincides with the one in (1.32). 
We select W1k = PtPxW E (Whk)2. Then, by (4.21), 

I Tf 
&((w - ,hk, hk))h dt = - ( PfPxW, th))h dt 

(4.23) = J ((w pXw tk))h dt 

= -((w(t =0) _Pxw(t = 0), hk(t = 0)))h 

+ j(((Px - I)Wt, hk))h dt. 

Similarly, using (4.22) and commutativity of pt and Px , we get 

((Aw4- APtPXW, qhk))h dt = j((A(I - Pt)w, hk ))h dt 

(4.24) T 
(((I- Pt)Aw, ohk ))h dt, 

(4.25) 
((Aw - AWk, hk))h = ((Aw - APxPtw, hk))h 

= (((I - Pt)Aw, ohk))h 

Collecting the results of (4.23)-(4.25) and recalling (4.20), we obtain the fol- 
lowing error equation: 
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(4.26) 

JT((e, S 4k))hdt- ((Ahe, Xhk))hdt+ (( Ahedt, 9hk(o))) 

T T 

(((px I)Wt, hk))h dt (((I-- Pt)Aw khk))h dt 

+ -[(I Pt)Aw] dt, hk(t = 0))) 

-( MI PX)W(t = o), ohk(t =OM))h - 

Denote 

(4.27) F (Px - I)wt(I - Pt)Aw. 

Then, since w(T) =0, 

(4.28) 

((jTF(t) dt hk (t= 0))) = ((IPx)w(t = 0) qihk(t 0))h 

- ((T(I J Pt)Aw dt, ohk (t =)) ) 

By (4.26)-(4.28), 

(4.29) 

9 oh(Ae,kk)ht+)k( JT((e, tk))hdt ((Ahe Jk))hdt (( Ahe dt, k(t =))) 

= J ((F(t), hk))h dt- (( F(t) dt, qhk(t - 0))) 

After recalling (3.16), we obtain 

Proposition 4.2. With e = whk - PtPxW, we have e = KZk[F], where F is 

defined by (4.27). 

Now the result of Lemma 4.2 follows from Proposition 4.1, Proposition 4.2, 
and the triangle inequality. c 

We establish next the error estimates for the projections pt and Px (here 
the arguments are similar to those of [1]). 

Proposition 4.3. For any < p, < q + 1 < ao, we have 

(4.30) ? (pt-I) | 2 dt < Ck2PIY I[O2T;H] 

T 
(4.31) L I(px- I) V/ 1 dt < Ch qll2(0, ; V 12 
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From Proposition 4.3 and Lemma 4.2 we obtain at once 

Lemma 4.3. From any p< p, < q + ? < ao, we have 
(4.32) 

JKZk - K*y,I| dt < C[k2P + h2 ][I[K* -]t (0 T ;R(A)) + AK YIHP(oT; H) 

Proof of Proposition 4.3. Let Pt(y,) =(4k, /k). Let the operator Rk: 
(L2(0, T x Q) S L2(Q) be defined as 

T T 

j(Rkf, )bk)Qdt = j(f, q$k)Qdt, qk E L2(Q) ? (SkP[, T]). 

Then 
y4 =kR y' and T* Vk h k V2 k Th V2 - 

Hence, 
T T T 

I pty |12 dt= il -1IL2(Q) dt + jIT V2 k _ 2 i2 dt 

= jI I(I-Rk) 1 L2(Q) dt + jI(I-Rk)Th/2 2122(i) dt 

_CP[2|l -2Q + I T,2Hf2IIh HP[OT;L2())]I 

< Ck2PjI'HP[0, T;fH]' 

which proves (4.30). 
As for (4.31), we denote PxV = (qlh, y2h). It is straightforward to verify 

that 
h = Ph' V1 and y/2h = Ph I2, 

where Ph is an L2(Q) projection onto Shq(Q) and Ph is an elliptic H1 pro- 
jection onto Shq(fi). Hence, 

(4.33) I(PX -I) "Ih < I 
- Y'1IL2(Q) + h ( 2)IL2(Q) 

< I (PhlI) V L2(n) <5 C[hq+ I1V, Hq+I(Q)]S 
where the last inequality follows from standard elliptic estimates. Combining 
(4.33) with (4.8), we arrive at (4.31). O 

Standard semigroup methods applied to the equation (3.8) yield 

d-K*YJ| < C[iqiIL2[0 T;9(A)] + IiIHI[0O T;?7(Aq)]I 
(4. 34) dt LAO0 T; g(Aq)] 

< C| IIHI[o0 T; 9(Aq)], 

(4.35) AK*V qIHP[,T;H] < C[IYfIHP[O,T; I1 + I VIH1[0,T; i9(AP)] 

and by an intermediate derivative theorem 

< COfI IHP[o, T;H1 + IY/IL2[0, T;.9(AP+1)]I 
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Combining the result of Lemma 4.3 with (4.34) and (4.35) yields 

Corollary 4.1. For any p< p, < q + 1 < ao, we have 
T 

JIKZ*kW- K*yiI dt 

< C[k20 + h 2][jlVI H1[0 ,T;O(AQ)] + IkIH1[O,T;?(AP)] + I yIH[O1T2H]] 

Lemma 4.1 combined with Corollary 4.1 yields 

Corollary 4.2. For q + 1 < ao, we have 

(4.36) 
I(L* - L*hk) IIL2(l) 

< Chq -I2 Y/ I L2 [0,T; 0(Aq)] 
+ Ch 112[kP + hq][|VIHi[0,T; (Aq)] + Il/IIHi[O,T; O(AP)] + Il/IIHP[O,T;H]] 

5. PROOF OF THEOREM 1, COROLLARY 1, AND THEOREM 2 

From Proposition 4.1 and (4.4) we obtain 

2Th[KZk (O )l <h-h KZk (<Ch 2h Ov[Khk 1 2- Th -T VI2 2 L2(I') 2 - Y/T I 
TV/2/h 

< Ch'I2jT,*'(I- T, TyI2)L2(T) < Ch-12I(Th - T)IHi(a). 

Now the result of Theorem 1 (part i) follows directly from Corollary 4.2, Lemma 
3.1, and the fact that for q < q standard elliptic estimates give, with q+ 1 < ao, 

(5.1) I(Th- T)Y/2IL2[0,T;Ho(a)] ? CT;P+I ()] 
< Chq| V2 L2 [0, T; 10- 1(12)] < Chq I /IL2[0 X T;O(Ai)] 

As for part (ii), it is enough to notice that, instead of using (4.34)-(4.35), one 
can use 

(5.2) d K*yI < CIVIIL2[O,T; O(Aq+l)], dt L2[0, T;?O(Aq)] 

(5.3) IAK* IIHP[O T;H] < C[IlgIL2[O, T;?(AP+')] + IYIIHP-1[O, T;O(A)]] 

By the above regularity results and Lemma 4.3, Corollary 4.2 reads now 

Corollary 5.1. For q + 1 < ao we have 

I(L* - Lhk)VIIL2(l) 

(5.4) 
< Ch I L2[O,T; (Aq) 

+ Ch 2 [kP + hq][| VL2[0,T;0(Aq+1)] + I VIL2[O,T;0(AP+')] 

+ I VIHP-I[O,T; (A)]] 

Thus, the result of part (ii) of Theorem 1 is a direct consequence of Corollary 
5.1 and Lemma 3.1, supported with (5.1). 
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Proof of Corollary 1. Since y _yhk = Ul - Uhk, by the same arguments as those 
in Lemma 3.1 we obtain 

(5.5) ly -yhkkH-p < sup (L* - 

Lk()) IgIL2(y) 

By the result of Cbrollary 5.1, specialized to Y/2 = 0, we obtain 

(L* - L ) L2() 

(5.6) 1 h L,|vz[0, T;9(T-/) 

+ Ch- 1/2[kq + hq][j ,| 1L[0,T;0(T-(q+')I2)] + 1IIHP-1[O,T;HO(Q)]1 

< Ch- 12(hq + kq) IyVIIHP+I,P(Q) . 

Corollary 1 now follows from (5.5) and (5.6). 0 

The proof of Theorem 2 follows from Lemma 2.1, the error estimates in 
(1.33), (1.34) combined with the standard (see [23] and [1]) "positive norm" 
estimates for the error function ehk = uhk - PXQtu . 

APPENDIX 

Following Nitsche, we define the bilinear symmetric form 

afl(X, y) _(Vx, VY)Q - +8X Y)r-x (X <9U)r B 

with the constant fib > 0. The solution y to (1.1) (corresponding to smooth 
boundary data) satisfies Ytt = Ay = A(y - Dg). Taking the inner product in 

L2(A) with an arbitrary test function ? E V, where V = {q0 E H'P(); q$r E 

HI (I)I, we obtain; 

(A. 1 ) (-A(y - Dg),~ OQ = a,l8(y - Dg, 

Here we have used Green's formula and the fact that y - Dg = 0 on r. On 
the other hand, one more application of Green's formula yields 

(A.2) 

a, (Dg, ) = (VDg, V b)a - Dg ) - (Dg ?A)r + fJo(g, )r 

(ADg~ ( ' 
O)a 

j+) + ?l(g fi 
O)r 

95 
Tv0) + lo(g , )r. 

From (1.1), (A. 1), and (A.2) it follows that the variables u1 _ y, U2 = Yt satisfy 

(A.3) J IUt 5 02)0 = (U2, 0) for )a V 

l(2t, 02)0 + a#,(uI, 2) = (- (g, 2)r +fO(g,4 2)r for 02EV 

The variational formulation in (A.3) combined with time discretization is the 
basis of our approximation. Indeed, let ,Bo -= fih-I, ,B > 0. We seek uhk - 

(U hk, uhk) E ,where Whk= Sq() SkP(O T) and Shq () C V , such that 
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T(uhk hk$ adt = j(uhk, htk)ndt for all hk E Whk, 

I T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

| f (g,k, ihdk)d dt+hafloj(Uhk, dhWk) d 

9 g 02^t) dt + flh-1 g,h2tked 2h e Whk 
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